

Radioligand Therapy tales: from Discovery to Development

Rafael Bermeo Malo¹, Alexei Karpov¹, Danielle Park¹, Sarah Choi¹, Goncalo Clemente¹, Carien Dekker¹, Takeru Ehara², Matteo Fischer¹, Andrei Golosov¹, Philipp Grosche¹, Dominik Hainzl¹, Philipp Holzer¹, Patrick Klein¹, Marion Lacaud-Baumlin¹, Lukas Leder¹, Shiva Malek¹, Andreas Marzinzik¹, Yoshihide Mizukoshi², Charlie Munsch¹, Eloisa Jimenez Nunez¹, Patrick Reid², Holger Sellner¹, Quincey Simmons¹, Therese Stachyra¹, Christopher Straub¹, Hayato Yanagida², Markus Reschke¹, John Lopez¹

¹Novartis Biomedical Research, Basel, Switzerland

²PeptiDream, Kanagawa, Japan

rafael.bermeo_malo@novartis.com / john.lopez@novartis.com

FAP (Fibroblast Activation Protein) is expressed on cancer-associated fibroblasts (CAFs) and is a highly attractive target in Radioligand Therapy (RLT) due to its pan-cancer potential. The penetrating nature of β -radiation is hypothesized to drive a 'cross-fire effect' from CAFs to tumor cells resulting in DNA damage and tumor cell death. Known FAP-targeting ligands show excellent and selective tumor uptake in the clinic but suffer from short tumor retention which limits their application beyond imaging. Herein we describe [¹⁷⁷Lu]Lu-NNS309 (FAP targeting ligand) which improves tumor retention and is currently undergoing clinical evaluation in Phase 1 (NCT06562192) in patients with PDAC, NSCLC, Breast Cancer, and CRC. Multiple starting points were identified via an mRNA display platform, then co-crystallized with FAP and assessed for bio-distribution in vivo. The series with the best tumor/kidney ratio was selected for further optimization to maximize affinity and proteolytic stability. [¹⁷⁷Lu]Lu-NNS309 binds to both human and mouse FAP with affinity Kd < 10 pM, shows exquisite selectivity over other proteases (such as DPP4) and is stable in blood and plasma.

We will outline the discovery of [¹⁷⁷Lu]Lu-NNS309 followed by an overview of peptide-based radioligands, focusing on risk assessment illustrated by examples of epimerization in known examples of peptide radioligands.