

Dynamic Confinement Approach for High Metal Loading Crystalline Single-Atom Catalysts

Murad Najafov^{a, b}, Kyung Seob Song^{a, b}, Stephan Pollitt^c, Felipe Gándara^d, Maarten Nachtegaal^c and Ali Coskun^{a, b}

^a Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland

^b National Centre of Competence in Research (NCCR) Catalysis, University of Fribourg, Fribourg 1700, Switzerland

^c Laboratory for Synchrotron Radiation and Femtochemistry (LSF), Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland

^d Department of New Architectures in Materials Chemistry, Materials Science Institute of Madrid—CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain)
murad.najafov@unifr.ch

Single-atom catalysts (SACs) bridge the gap between homogeneous and heterogeneous catalysis by combining molecular-level control and selectivity with structural robustness and scalability, achieved through atomically dispersed metal active sites [1]. However, their practical deployment is often limited by metal atom aggregation at elevated loadings, which compromises catalytic performance. Herein, we report a new synthetic strategy for the preparation of high-loading SACs based on palladium polyphthalocyanine covalent organic frameworks (COFs) using a mixed-metal ionothermal approach [2]. The method relies on the cyclization of tetracyanobenzene and tetracyanopyrazine in molten salt systems containing $\text{PdCl}_2/\text{ZnCl}_2$ or $\text{PdCl}_2/\text{ZnCl}_2/\text{NaCl}$, enabling simultaneous framework formation and palladium incorporation. The resulting crystalline materials exhibit atomically dispersed palladium species with metal loadings approaching 23 wt%. When evaluated under continuous flow conditions, these catalysts demonstrate stable activity, achieving yields of up to 90% and maintaining performance over 24 hours, establishing a new benchmark for metal loading and operational stability in SAC systems.

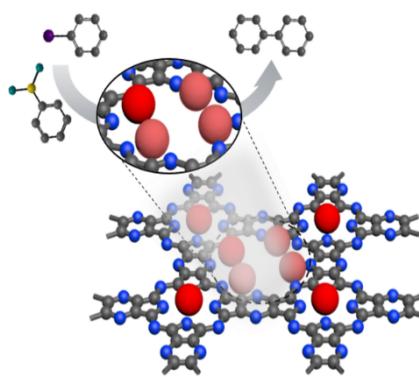


Figure 1. Dynamic confinement approach for ultra-high-loading Pd single atoms in phthalocyanine COFs

[1] Giannakakis, G.; Mitchell, S.; Pérez-Ramírez, J., *Trends Chem.* **2022**, *4*, 264–276.

[2] Song, K. S.; Fritz, P. W.; Abbott, D. F.; Poon, L. N.; Caridade, C. M.; Gándara, F.; Mougel, V.; Coskun, A., *Angew. Chem. Int. Ed.* **2023**, *62*, e202309775.