

Bioelectrocatalysis for Sustainable H₂ Production by Hydrogenase Enzymes

Nils Ostermann, Sophie Webb, Andrea Do Nascimento Henriques, Ross D. Milton

University of Geneva, Department of Inorganic and Analytical Chemistry, Sciences II,
Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
nils.ostermann@unige.ch

“Green” dihydrogen (H₂) is developing into a key player in solving the global energy crisis and reducing CO₂ emissions, as its combustion only produces water as a side product. However, current technologies for producing, transporting and storing “green” hydrogen are somewhat limited and more than 99% of globally utilized H₂ are still tracked back to fossil fuels and thus considered to be economically unfriendly.^[1] In order to access more sustainable hydrogen evolution technologies, the enzyme class of hydrogenases can act as a blueprint for building ecofriendly model systems. Hydrogenases are capable of catalyzing the reversible interconversion of protons and electrons into dihydrogen with exceptional high rates at mild conditions, *i.e.* neutral pH and ambient temperature and pressure.^[2]

As a model, we study the [FeFe] hydrogenase *Cpl* from the organism *Clostridium pasteurianum*, due to a relatively ease accessibility and a high bias towards hydrogen evolution (with *in vitro* TOFs of up to 5900 s⁻¹).^[3] To mimic the biological environment, where electrons are delivered by oxidoreductase enzymes, the application of an electrochemical potential (that itself can be generated by renewable energy sources) to these enzymes opens a new possibility for “green” hydrogen production.^[4] Herein, we present two approaches to electronically feed *Cpl* in either a direct electron transfer (DET) configuration, where the enzyme is efficiently immobilized onto a mesoporous ITO electrode, and a mediated electron transfer (MET) configuration, utilizing a electrochemically reduced low potential viologen based electron mediator.^[5] The latter has shown to boost the enzymes activity beyond the so far reported activity numbers, while the former demonstrates the construction of a highly active and stable bioelectrode.

[1] IEA, *Global Hydrogen Review 2023*, IEA, Paris, **2023**.

[2] R. D. Milton, *CHIMIA*, **2024**, 78, 13–21.

[3] M. W. Adams, *Biochim. Biophys. Acta* **1990**, *1020*, 115–145.

[4] S. Webb, R. D. Milton, *ChemElectroChem*, **2025**, *12*, e202400700.

[5] a) S. Webb, A. Veliju, P. Maroni, U.-P. Apfel, T. Happe, R. D. Milton, *Angew. Chem. Int. Ed.*, **2025**, *64*, e202416658. b) N. Ostermann, S. Webb, A. Do Nascimento Henriques, R. D. Milton, *submitted*.